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A Lie algebra structure is defined oa the set of all continuoas one-parameter groups
of nilpotent topological groups. Extensions are given to some inductive and projective limirs,

L Introdoction

In the theory of real Lie groups it is possible to transform many Lie group problems
into algebraic problems by utilizing Lie aigebras. The Lie algebra of a real Lie group G
may be identified with the set L(G) of all coatinuous one-parameter groups in G. Whea G
is a topological group this set L{G) is well defined and we may ask under what condition
is it possible to define on it 2 Lie algebra structure.

An answer to that question may be useful in the following problem: given a family
(Adws of skew-adjoint operators in a Hilbert space, give a meaning to the formal finite
linnreombinaﬁon; 4 A; (X & R) or brackets {4;, A;] 2s skew-adjoint operators. In quan-

tum mechanics these cperators (observables) appear as generators of strongly continuoas
one-parameter groups (0;)ies contained in a natural group of covariance (or invariance)
of a physical system, the latter being a group G of unitary operators on the Hilbert space
of states, endowed with a finer topology than the strong convergense topology. If we know
how to define a Lie algebra structure on L({G), we then define the [inear combinations and

the bracket as the generators of the strongly coatinuous one-parameter groups ¢ -Z 401)
[

and 7 - {6;, 6,}(1), respectively. They may not coincide with the usual definitions givea
in operator theory, and if they coincide the group may be defined as the exponentiated
form cof the Lie algebra of operators. ) _

Before passing to the heart of the problem we menticn two examples in which the
passage from the topological group to the Lie algebra and vice versa for nilpotent groups
is important for physical problems.

a) If one is concerned with one-dimensional quantum mechanics with the poteatial ifx
(because of the existence of charges, masses, ...) an obvious problem is to look at the
observable algebra generated by the linear momentum (represented by d/dx) and i/x. In this

fm



172 L. MAGNIN and J. SIMON

case, the one-parameter groups correspoading to these two operators generate a group G
such that if (G").»; is the central decreasing series, there exists many topologies on G such

that () G, = {¢} (a similar situation appears when one considers the Dirac operator
s>l

.i:: a®2¢+if and, the Coulomb potential iefr).

b) In Quantum Field Theory the problem of the free field commutation relations is
very old (evidently, we speak about a Bose field). When looking for representations of
commutation relations of Quantum Field, one immediately remarks that, first, they form
a nilpotent Lie algebra, second, the class of representations of the algebra is very large
(even in the finite-dimensional case of quantum mechanics) and it is hopeless to try to
classify all of them. For this reason, as well as for the commodity of having unitary oper-
ators, H. Weyl bas postulated the commutation relations of feld theory in their expo-
neatiated form. Passing from that form to the Lie algebra structure (which is the only
form dictated by field theory) is in this case a very simpie consequence of the general result
we get in this article,

In this article we prove in Section III that given a nilpotent topological group G, L(G)
has a nastural Lie alg=bra structure,

We then extend this result in Section IV to topological groups which are some type of
inductive or projective limit of nilpotent topological groups.

IL Definitions and general propesties

Given two clements x, y in a group G, we denote by {x, y} = xyx=!y~* thecommma&or
of x and y. Given two subsets M aad N in G, we denote by {M, N} the smailest group
containing the set of all commutators {x,y} with xe M, yeN.

The central decreasing series of G is defined by G' = G, G* = {G, G}, ... G*
= {G,G"*'}, ... and G is cilpotent if G* = {e} for some m. The smallest aumber &
such that G* = {e} is called the Jengrh of G. The derived series of G is defined by D°G
= G, ..., D°G = {D"'G, D"~'G}, ... and G is solvable if D'G = {e} for some L In what
follows the term ‘topological group® means a Hausdorfl topological group, and the term
‘Lie group’ is used for a finite-dimensioral real Lie group.

We denote by L(G) the set of all continuous one-parameter groups of a topological
group G. Given p elements 4, , ..., 8, in L(G) and a functioa a: {1, ..., 2} - {1, ..., p}....}.
we define

Ou(tyy coes ty) = Oy (81, cees 1) = {8, (0], .ocs {0e,., (tp1)s 00, (ts)} --.}-
We shall utilize the following formulae
{xy,z} =[x, {r,2}} {r, 2} {x, 2}, )
{x,yz} = {z,y}{x, s} 2. <)o 5} @
with x, y, z € G implicitly.
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We say that 8, , ..., 0, € L{G) generate G if the smallest group containing‘ {J 0(R)isG.
<icp

Lemma 1. Let G be a topological group and 8: R* — Gafunaian which is a continuous
one-parameter groug on every variable when the other variables are fixed. Then there exists
a unique o € L(G) such that

a(t|. eevy t') -W(“ see r’) fo’ every (", .sey ") &€ R”,
The proof of this lemma is straightforward with

@ty ... ) = 0(1, .., 1,5 ..1).

LA 2. Ler A, B be connected Lie groups, G a topological group, u: A - G, o B-G
continuous homomorphisms, where © is, moreover, bijective.
Then v~ eu: A — B is a continuous komomorphism.

Considerthe mapuxo: Ax B~ GxG, and let Cbethemversenmageofthcdmgonﬂ.
‘Thus ’

C = {(x, Nlu(x) = v()} = {(x, )y = o7 eer(x)}

is the graph of o-! ew. Since ux v is a continuous homomorphism, C is a closed subgroup
and hence 2 Lie group. It is countable at infinity, therefore the first projection pry: C — 4
is an isomorphism, and v~ su = pr; ¢ (pr)~! is a continuous homomorphism.

As a consequence, if there exists on G a finer connected topology with respect to which G
is a Lie group, it is unique and this finer topology has the same coatinuous one-parameter

groups.
In the following we shall utilize thae two facts implicitly.

HL Constraction of the Lie algebra

Derinmion 1. An L-solvable topological group G is 2 solvable topological group
generated by a finite number of continuous one-parameter groups and such that if 8,, 0,
€ L(D"G), there exists a,, ..., 2, € L{D**'G) and real analytic fuactions P,, ..., P, on R?
such that for any real numbers ¢,, 7, we have

0,.2(t,,15) = 3:(’:(’1- ’z)) sae Gr(Pr(‘n ‘z))-

If G is an L-solvable topological group, then D”G is also an L-solvable topological
group.

LeMMA 3. Let G be an L-solvable topological group. There exists on G a finer connected
topology for wrich G is a Lie group.

Denote by /(G) the smaliest number such that DG = {e}. We shall prove the lemma
by induction on l(G). If XG) = 0, this is obvious. Suppose it is proved for /(G) € n—1.
1f {G) = n, denote by H the group D'G with its Lie group structure. Choose a Jordan
basis @, , ..., m of the Lie algebra L(H).
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Then, if 0 ¢ L(H), it follows from (1], IIL, §9, n* 6, Proposition 20, that there exist
unique analytic functions P}, ..., P; such that .
8(t) = w0, (Pi(1)) ... n(P3(1))
forevery te R.
Choose 6,, ..., 8, in L(G) generating G and defiue the function f; R'“-o GbYy
SWs cocs tys tty,y ony th) = 84(8y) ... 0y(8y) @y (1)) ... on(a).

[ is surjective. Now, there exist unique analytic functions P,, ..., 2, on R¥P*® guch
that

f(‘l » ooy ’p’ Byp aeesn "I.m’;p sesy ‘;o "1'- soey "‘)

= al(tl +';) a’(’p+',)wl(Pl('lv t:! u]’ ]')) -wl("h(rh 'l's "}’ ll;))
for arbitrary real numbers 5,4, 5,u; (1 € K 2,1 /< k).
We define on R*** the composition law :
(‘I: evey t" Uyy eomsn "t)('ls ocey f'. ll'. ecey “a
= (t; +f:, coey f’+’;, Px (fg. ’:, u, UD, vansy Pg(“, Ig', u;, UD).

1t is casily seen that it defines a Lie group structure L on R***, and fis a continuous
bomomorphism oato G.

This induces a continuous bijective homomorphism from the connectgd Lie group
L{Xerfonto G.

THEOREM |. Let G be a nilpotent topological group generated by a finite mamber of
continuous one-parameter groups. Then there exists on G a finer connected topology for
which G is a Lie group. .

According to Lemma 3 it suffices to prove that G is an L-solvable topological group.
Suppose the result is proved for nilpotent topological groups of length k € 2—1 (this
is obvious if k = I). Suppose the length of G is n. We bave G* = {¢}. Suppose G**'
is generated by a finite number of its continuous one-parametcr;roupsandthatxfi) 1
and 8,, ..., 6,,; € L(G). there exist a,, ..., 2, € L(G™*)) and P,, ..., P, € R(X,, «ees Xpad
such that

By peillse cees tped = &y (Pyllys oes 194d) v BeiPrltys oes 19ad)
for arbitrary real numbers ¢,, ..., Tpess . -

Now

al._,o(‘l +';' ’2’ cney ‘p)

- al-lol-_-)(‘l 14 t;’ ’3? ceey ’p)al._..'(!;v ’39 casy tp)al.....’(‘l- ’3* esesy ")' (3)

If @y, ..., @, is a basis of the Lie algebra L(G***) such that if iy = dim G*, ®,, ..., @,
is a basis of L(G*) (p+1 < k < n), then it follows from [t], IIL, §9, n°S, Proposition 17,
that there exm Py, .., Py e RIX,y, ..., X,,,] such that

01.1.2....0(81 s £25 caas Bpey) = ay (Pn (Fas 82y oes tpsr)) vee a’c(Pc(‘! S RO S )
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for arbitrary real numbers ¢,, #;, .., 4,43 . We have
Os.1.2._»(t1s 82y coes ot Ty coon Tpar)
w0y 1.3 205022y cees Ty coes Tpas) X
%0;.1.20p(l10 125 coes Ty voes tpa )X(11 s 12y ey o By ey Bpay)y (@)
where X(fy, 22, --s fas Loy ooy Ipsy) € F2.
If G?*1 is the universal covering of the Lie group G**! and &, ..., &, are the coverings
of @y, ., @, in G***, define
Sy s tyas) ™ @ (Py(tyy coes 1pa1)) oo BPeltys cons tpay)).

From (4), the projection of f{fy, ..., tp4) in G***/G?*2 is a one-parameter group for
every variable. Consequently, there exist real numbers a,,,,, (1 € s € g—1,, ;) such that
Prorrs(tss ccns lpat) = Qipyudly - Tpage

- Therefore, there exist unique polynomials Pj, ..., Pq such that

0yt 11,03,y ccar bp) .
© m Byl tay s 10y y(the b ena )X
xml (P;(tl’ tl'.r ’3t badd 4 tp)) Lidd mu(F;(‘l’ ’;9 ’3! ooy f,)),
where .
Plrrs(tististay s ty) may ytility .ty (1 € 5€ g=lpys).
Thus

134, ... 1 131, ...
[ e (-‘:..,-H “‘"IT"!) ne mc(-a( —"'z‘z——z)ax.....;(’u 135 cees ly)

is a one-parameter group with respect to the variable 1, in G°/G7*3,
Repeating this procedure, we see that there exist homogeneous polynomials
Qiz+s(tre -es ty) (1 € s € g—i,,;) of degree p+1 such that
Wyt (Qt..,d—l(’l 9 oney tp)) eoe Wy (Q.(t;, sooy ‘D))al-..-l(‘l [ e ‘r)
is a one-parameter group for every variable in G°/G7*3.
Suppose now that there exist polynomials Q, ,,(¢;, ..., %) (1 € 5 € ¢g=i)) such that

¢(tlr eoey f,) =W, (Q‘..‘.'(fx, ceny t,)) s m,(Q,(t,, cany t,))ﬂ,m,(t;, ey t)

is a one-parameter group for every variable in G/G*.
There exist unique R,, ..., R, € R[X,, ..., X,4,] such that

el +11, 1, s tp)
= G(tyslys ey 1) P(t3, 13y cees 205 (Ry(ts, 01, 124 ces 1)) e @ (Re(t34 13, 824 wens 8p))-
The function v ‘

K’lo tl!’ ’z, eocy ’p) =, (R!(’lr t:v 124 cons ’p)) oee wc(Rq(tl.n ’:o ’3' baad f,))
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is analytic from R**! into th= Lie group G** and takes values in G, therefore R,

=0(1 €< g=ip).
Writing?, + (11 +11) = (t; +¢1)+1%’, one gets

PUAT s e ) VFUL s aes 1) PPy cees LI + L+ 4T ey 1))
=g o1 (R 1@as 11417 cees )+ R 1 (01, 17 ey 1)) ooe
voe W (Re(tys B+, coes 1) F RY105 17 cees 1)) Xty 13, 87 ooy 1)
= g s (R o 1 (Gs 11, 80 s oo s 8)F Rig o1 (s s ces 1)) e
voe @ (R Oy 411,07 s ceen ) F R (10, 11y eeea 1)) Y04, 11,87 o s 1),

where
X(t3, 01,17 s cees 2) m @y (T by, 11,10 < e 89)) coe @1y, (T (11 21, 170 ey 1))

with T, ..., Ti,., € R[X,, ..., X,,.] and a similar expression for y(1,, 11, 17, ..., 2,).
Therefore, since w,, ..., , constitute a basis of the Lic algebra L(G7*?), one gets

Re(ty, 1417, cees 1)+ R85, 174 s 2y) = Rty +11, 17, s 1)+ Ri(ty, 21, -0 8p)
and
Ru(1,0,235 cecs ty) = Ra(0, 81,835 cecs 8y) = 0 (iey < k € 1))
Then we necessarily have

a P a L0 d YA
'Ft'i' (tl) ’ls‘ cony ’l.) - (-E;;T‘Rt('g‘l"l.o 11 goey t'))l‘.'-d- (_a;;TRt(t!: 84 5 aeey ”)

Then
Rty tiy ceest) = > Bjaltag ceus 1)+ 1Y =tl =17), whete by, € R(X,, ..o Xpu o)

6.-

=0

Therefore,
(1, --s ly)

- .1 (—ij,,mﬂ(:,, vns t,)t{) vy, (—zb,_,,(t,, vy t,):{) @y s weerty)

is 2 one-parameter group with respect to ¢, in G*/G**2.

Like for ¢, we have

"(tl’ ’2+:5v eecy ‘p)

- V(tls ’39 evey ’p)i’(’l "’él evey ")’“l (SI(‘I » l;, t;- ooy t’)) b
voe lD;. (Sl.(‘l.s ‘29 ‘2’.1 aosy t;))- (5)

where S, are polynomials and S,,,,+, (1 € 5 € is=/1,) have the same properties in the
variables £;, 23 as R, ,,(1 € s € ih—1so() in 1y, 1{. We shall prove that the polynomials
St,.,+¢ 3re homogeneous of degree one in t,.
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Indeed, we have
¥Ry, 2413, ey 1) = ¥(lh, 12, ooy 1) 003, 13, .o\ 1,)3-
41 (Sis1(215 220 130 cees 1)) e @4, (S, (15, 12, 13, oy 1)) (1, 13, 13, o0n 1) (6)
and
T2y, 1313, ceny ly) = (P(’u 234 cees 2)P(ty, 22, ..oo f,))’-
By 1 (23'0-,('1» 13,13, ey ’p)) ae “’h(zsl.(‘h 12,13, eees t,-))‘?(‘n 135125 eeey ), M
where x(1,, 13, 12, -, I,) and 3(ts, 13, 13, ..., 1,) are expressions of the form
w’(’l(‘l’ ‘3: ‘29 ooy ")) eas ml.., (Pg..(‘: ' 33, 33. ooy l,)),
where P,, ..., P,,,, are polynomials.
Sioce Sy +s (11 124 12, -, 1) is symmetric in 1;, 73, we have
F(10 020030 cees ) V(05,120 030 s ) :
= gty 13,13, coes 1)P(0y 0 13, 834 caey 1) 28y 4 22, 12, ey 2p)s
where z(t,, 13, 3, ..., 4,) is an expression analogous to x(¢,, 73, 1, ..., 2,).

Then it follows from (6) and (7) and from the fact that w,, ..., @, is a basis of L(G"*+?)
that '

st(z’l * ’z. t;. wooy ") ”R(’lv '3’ ti: esny :p) (i." < k ‘ fl)-

Therefore S, (fe1 < k € i) are homogeneous of degree one in ¢, .

It is then possible as before, by multiplying by 3 on the left to have a one-paramewr
groop in G7/G**! with respect to the variable 1,, and since S, (i, < &k € £) are homo-
gencous of degree one in 7,, we have again 2 one-parameter group in 7,.

Iterating this procedure, it is possible to construct polynomials @, (2y, ..ep Z,) (fae; <
k € i) such that ‘ _

(‘lo vavy ’p) - mi..gi-l (Q'h-y#l(tl § ovey I,)) bt "’G(Qh("u sy ’p)»(’lv wory ”)
is a one-parameter group for every variable in G?/G**!. Therefore, there exist polyno-
mials Qy(#y, ..., %) (1 € k € q) such that
(tas s 25 = @4 (Q1(f1s wees 1)) coe 9 (Qullrs wevn 1))81 sty woer 2,)

is a continuous one-parameter group in G”/G* = G’. According to Lemma 1, it is of the
form ex(, ... 1,), with @ € L(G”). So we can write
al._..'(’l‘ wesy ") - 2. (Pl(’lv eney ’p)) oee al(’l(‘lo swey ”))o . (8)
where z,, ..., 2, € L(G") and P,, ..., P, are polynomials.
Consequently, G” is generated by a finite number of its continuous one-parameter
groups.
Thus G? is generated by a finite number of its continuous one-parameter groups and

Be.2(ts, 12) = af{ (Pi(ty, 13)) ... 2 (Palty, 13)), with &f,...,a, €L(G®) and Pi,..., Pa
€ R[X,, X].

Therefore, G is an L-solvable topological group. =
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If 2 group G satisfies the hypotheses of Theorem 1, what we mean by “the Lie group
G~ will now be clear.

CorotraryY 1. Let Ay, ..., A, be skew-adjoint operators defined in a Hilbert space H.
Denote by D the intersection of the domains of the products Ay, ... Ay (fy, ...is€[1,p}
k @ N), by A%, —., A, the restrictions of Ay, —., Ay 10 the domain D, and by g the real Lie
algebra of operators dafined on D generated by A5, .., A,. :

Suppose that the group G generated by the unitary one-parameter groups t — &
(i =1, ., p) is nilpotent. )

Then g is nilpotent axd every A’ & § is an essentially skew-adjoint operator on D.

Indeed, G is a topoiogical nilpotent group with respect to the strong convergence
topology and is generated by a finite number of continuous one-parameter groups. Denote
by L the group G with its Lie group topology. The injection i: L ~ G is a continuouns
unitary representation of L. Since D contains the set of all differentiable vectors of this
representations and every 4’ € g is skew-symmetric, we get the desired resuit.

At this level, the following proposition is trivial.

ProrosiTioN 1. Ler G be a topological nilpotent group, H and K subgroups of G gerer-
ated respectively by a finite monber of their continuous one-parameter groups, L the group
generated by H u X. Then the Lie groups H and K are analytic subgroups of the Lie group L.

Deranos 2. Let f: G° — G be 2 continuous homomorphism between two topolog-
ical groups, the differential df of f is then the mapping df: L(G") ~ L(G) defined by
(@OX1) = 1(6(r)) for every 0 € L(G), 1eR

TusOREM 2. Ler G be a topological nilpotent group. There exists a unique Lie algebra
strecture on L(G) satisfying the following property:

(A) Ghamyﬁute@mnadrzd&md’mdacmmhwmhm
Lt G = G, df: L(G") — L(G) is a Lie dlgebra homomorphiom. .

Given 0,,8, & L(G) ooe puts on the group H generated by 8, and 9, the associated °
connected Lie group structure. The Lie algebra structure of L(H) permits us to define
8, +8,, [0;. 8] and &b, for every real aumber a (a9, is simply the coatinuocus one-para-
meter group ¢ — 0, (ar)). It follows fzom Proposition 1 that it defines a Lie aigebra structure
on L(G). Property (A) and uniqueness thea resuit from Lemma 2.

, COROLLARY 2. l::f:G’-one.émtmkomamrphimbarmm:opolor
ical nilpotert groups. The mapping df: L(G") ~ L(G) is a Lie algebra homomorphism.

'IV. Extensioa to more gemers! groups
Dearxmmion 3. We say that a topological group G is indhctively nilpotent il there
- exists an increasing sequence (G.e>3

G,;G,c...cG.cG,,. < e
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of subgroups of G such that Gm= ..U. G,, cach G, being a niipotent group.
Inoin 4, Lt G = L.J G, be an inductively nilpotent topolegical group, Given a con-

nected Lie group H and a continuous homomorphism f: H - G, there exists an integer n for
which flH) < G,.

The lemma follows directly from the Baire theorem,

Tueore 3. Given an inductively nilpotent 1opological group G = (] G,, there exists

L L]
a unique Lie algebra structure or L{G) satisfying property (A).
‘ — ——
By Lemma 4, we have L(G) = |_) L(G,). We endow cach L(G,) with the Lie algebra
aml .

structure defined in Theorem 2. If m < n, L(G) is a subalgebra of L(G,). Therefore L(G)
can be endowed with a unique Lie algebra structure for which each L(G,) is a subalgebra

of L(G).
Using again Lemma 4, it can be easily proved that this Lie algebra structure on L(G)
is the only one satisfying property (A).

- .
CozOLLARY 3. Giren rwo inductively nilpotent topological groups G = U G, ond

G = U G. and o contirmuous homomorphism f from G into G", the mapping df is a homomor-
phism aftlxe Lie algebra L(G) irto the Lie algebre L(G7)

Derivmion 4. We say that a topological group Gis projectively nilpotent if {.1 G = {e}.

Denote by =, the projection of G onto G, = G;'G:‘. Let g be the cominuo:s'homomor-
phism of G, onto G, (for m < n) defined by g,(xG™ = x(?: The pair (G,. g.a) is 2 pro-
Jjective system of topological groups. The projective Emit G = lim proj G, is the closed
subgroup of :I]‘ G. cornsisting of those sequences (x, G*) such that x,G™ = x,G™ form € n.

We dezote by g, the canonical mapping of G into G,, which is the restriction to G
of the ath projection of .[1 G,.

The projective limit of the homomorphism =, (ie the continuous homomorphism’
2: G — G defined by (x) = (xG™)) is one-to-one since ﬂ G* = {¢}, and =(G) is dense

in G. However, is should be noted that x is not necmrﬂy onto. It is sufficient to satisfy
the following condition to ensure the surjectivity of = [2):
(P) G is complete and each neighborhood of the identity contains one G°.

We now suppose that this condition is satisfied. Then =z is a topological isomorphism
between G and G, and &z: L(G) - L(G) is bijective.

Lemsa 5. (L(GJ), dgu) is a projective system of sets and ¢ = lim projdyg, Is a bijection
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berween L(G) and lim proj L(GD. ’

The proof of this lemma is straightforward.

THEOREM 4. Girven a projectively nilpotent topological group G satisfying (P), there
exists on L(G) a unique Lie algebra structure such that:

(B) For every n 3 1, dx, is a homomorphism of L(G) ﬁuotlwlzealgebm L(GY)-

This property ensures also that the Lie algebra L(G) satisfies property (A).

By Corollary 1, (L(G.), d2) is 2 projective system of Lie algebras and consequently
lim proj L(G.) has a Lie alg=bra structure which we transfer to L(&) by the bijection ¢
and thea to L(G) by the bijection dz. Then the Lie algebra L(G) satisfies property (B) since
dz, = dg, e dr. We shall show that L(C) satisfies property (A). Givea a continuous homo-
morphism f from a connected finite-dimensional real Lie group H into G, if f, =

7, o f, then (df2) is a projective system of homomorphisms of the Lie algebra L(H) into
the Lie algebra L(G,). Its projective limit is the homomorphism y: L(H) — lim proj L(GD
defined by y = @ e d1e df and hence df is 2 homomorphism.

The uniqueness follows immediately.

COROLLARY 4. Giren two projectively nilpotent topological groups G, G satisfying (P),
and a comtinwous homomorphism [.G ~» G, the mapping df:L(G) —» L (G") is a homomor-
phism.

Let fo: G, — G_be the continuous homomorphism induced by 1. (df.) is 2 projective system
of homomorphums of L(G,) into L(G). Denote by & its pro;ecme limit. As df = (d1)"' e
¢~ ¢ 2o ¢ e d, dfis 2 homomorphism.
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