
A N A L Y T I C I T Y  AND LIE GENERATORS 

L. MAGNIN 
Physique Mathdmatique, Universitd de Dijon, BP 138, 21004 Dijon Cedex, France 

ABSTRACT. We consider and answer in the negative the question whether, given a Lie group 

representation, analyticity of a vector for the representatives, in the differentiated representation, 

of a set of Lie generators of the Lie algebra implies analyticity for the group representation. 

0. INTRODUCTION 

Let g denote a real finite-dimensional Lie algebra {X1 ..... Xr} a set of Lie generators of g (i.e., 

which generate g by linear combinations and commutators), and rc a representation of g by 

skew-symmetric operators on a dense invariant domain D in the Hilbert space 3s One then knows 

[2] : (i) Y X E g, the set D~o (rr(X)) of analytic vectors of rr(X) is invariant under the action of rr(g), 

(ii) if all elements of D are analytic for each operator n(Xi) 1 <~ i <~ r, then there exists a unique 

unitary representation Uin ~ of the connected simply-connected Lie group G with Lie algebra g, 

such that VX E g, rr(X) is contained in the skew-adjoint generator dU(X) of the unitary one- 

parameter group t ~ U(etX). 

When the hypothesis in (ii) is satisfied, one may then ask the following questions: 

(1) Are elements of D necessarily analytic for the group representation U; in other words, 

does analyticity for each rr(Xi) 1 <~ i <~ r imply analyticity for 7r(X) VX ~ g 

(2) For X ~ g, is D~o Qr(X)) necessarily invariant under the action of the group representation U? 

We here prove that answers to these questions are negative. More precisely, let U denote the 

quasi-regular representation of SU(2) in L 2 ($2), (J1, J2, J3} the basis of Sll(2) with [Ji, Jk] = eiktJt. 

Then we show in Section 2 that there exists C~*-vectors for U, which are analytic for dU(J1 ) and 

dU(J2), and however are not analytic for dU(Ja); there also exists vectors in L2($2) which are 

analytic for dU(J1 ) and dU(J2 ), but which are not C ~ for U. In Section 1, we prove that the set 

of analytic vectors for the regular representation of a compact Lie group is the set of analytic 

functions on the group. 

]. REGULAR REPRESENTATION OF A COMPACT LIE GROUP 

Let G be a (real finite-dimensional) Lie group. The space of C ~-vectors of the regular (left or right) 
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representation in L 2 (G) is the space C** (G) of C**-functions; the space of analytic vectors is 

contained in the space Ct~ of analytic function on G, but for noncompact G these two spaces 

may not coincide [5]. We prove that, for compact G, there is coincidence. 

LEMMA. Let G be a compact Lie group, g its Lie algebra, f E C~'(G) and X E g considered as a 

right-invariant differential operator. Then, there exists constants C, ~ > 0 such that 

Vn GIN, Vx E G  [Xnf(x)l <<.CXnn! 

Proof. This lemma results of Nelson's analytic domination theorem [4] ; however we give here 

an elementary proof. Identity g with IR p (p = dim G) by choice of a basis. Let Ir be an open 

neighborhood of the identity in G such that Z ~ e z is a analytic diffeomorphism of an open 

polydisc P centered at 0 IRt, onto Ir Fix xo E G. Denote byH(U, If) the Hausdorffseries, Q1 c P a n  open 

polydisc centered at 0 such that H is analytic on Q1 x Qx and H(Z, Z ' )  E PYZ, Z'  E Q~, and 

let ~bedefmedonQl x Q1 by ~(Z,Z') =f(en(z'Z')xo).  ForX, YE Ql ttt~< 1, 

f (e  - tX eYxo) = ~(- tX ,  Y). Denote by (~l ..... ~t,, r/1 ..... r/t, ) the coordinates in ~t, x IRt,. Then 

d n 
r)= Z (-1)nn! bn~k 

 -tx, ... 

where Xx ..... Xp are the components of X. Let Q c Qx be a closed polydisc centered at 0 with 

radii < 1. As qJ is analytic, there exists constants A, 8 > 0 such that for x, y E Q, I t l < 1 : 

(-tx, r31<<.AS"n! (nl ...+np=n). 
1 

+ 
[ 

Then 

hence txn f (erxo) l  <<.A(Sp)nn! Vn E IN, VX, YE Q. By compacity of G, the lemma is proved. 

PROPOSITION. Let G be a compact Lie group, U its left regular representation in L 2 (G). The 

space o f  analytic vectors o f  U is Ct~ G). 

Proof. Denote by X -+ U..(X) the representation of g on C ~*-vectors of U, and let f ~  C w (G)" 
Then, V X E  g, U,.(X)f= Xf, Xbeing considered as the right invariant differential operator. From 

the Lemma, there exists C, k > 0 such that 

II(U.,(X))"flIL, tO) < C vol (G)k" n! 

i .e. ,f  is analytic for U~(X), VXE g. 
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2. ANALYTICITY FOR LIE GENERATORS VERSUS ANALYTICITY 

2.1. L e t G = S U ( 2 ) , g = ~ 1 1 ( 2 ) a n d  {Ji. J2, J3}thebasisof g d e f i n e d b y  

; t  o1) , ~ 
we have [Jx, J2 ] = J3, [J2, Ja ] = J1, [J3, J1 ] = J2 and the corresponding one-parameter groups 

are  

e t:~ = (cost/2 isint/2) eG=(c~  -sint/2], etJ,=(e "/z 0 ).  

is in t/2 cos t / 2 / '  \ s in  t/2 cos t/2 / '  0 e -~t/2 

There is only one conjugacy class in ~ 11(2) and we shall utilize the following formulae: 

etJa = e-Or/2)G etG e0r/2)G 

e tG = e W2)G e ~ e -('q2)J2 , (t E IR). 

In the complexification gr of  g, introduce as usual 

Then 

H• = U 1 Y: J2 ,  0 3  = /']3" 

[Ha. H_+ ] = -+H• [H+, H_  ] = 2//3. 

Z2. Denote by U the quasi-regular representation of  G in the Hilbert space g = L 2 ($2) 

(U(x)r -l  "~), xEG,~CS2 , fEL2(S2)  

with respect to the usual action of  G (via SO(3)) on the sphere $2. Since $2 is analytically 

isomorphic with the homogeneous space G/H, H = (e tG ; t E IR}, the space of C~-vectors for U 

is o f  the space of  C ~-functions and, from Section 1, the space of  analytic vectors is the space 

C~~ ) of  analytic functions. 

(1) 

(2) 

2. 3. Still denote by Jk (1 ~< k ~< 3), H• H3 tile operators U=(Jk), U~ (1t+_), U~ (tt3) in ~ ,  with 

domain D = C~($2 ), defined by tile differential representation U~o of g, and let J-k = dU(Jk) the 

closure o f J  k (skew-symmetric generator of  the unitary one-parameter group t ~ U(e tJk)). 
i N,  unitary irreducible representation of SU(2).) It is known that U ~ ~t~IN D (t). (D (0, 1E T 

Let {Y~ ; l E IN, - I  < rn'~< I} the orthonormal basis of  Jr consisting of the spherical harmonics. 

Then: 
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H3 y~n = m y [n ,  

with ~2 n = (l + n)(l - n + 1), - l  ~< n ~</. 

H+Y~ n =am+lY/n+' ,  HY[ n =~my[ n-I  

2.4. From (3), H3 = i]3 is the operator defined on the domain 

by 

DB~ = f = ~ a~ny/n; ~ ~ m 21a~n12 <+~o 
1 = 0  m = - l  l = 0  m = - l  

Hsf  = Z 7. ma~nY~. 
l = 0  m=--l 

Hence the space of analytic vectors of J3 is 

m = - 1  

agrp E c; 3a>o X X 
1 = 0  m =  --1 

(3) 

I 
la~ n 12 ealm I < +oo / 

From (1) and (2), f E  ~f is analytic for J2 (resp. ~ ) if and only if U(e 0r/2)J~ ) f  

Now, denote by (q / ,  n ) - l  < m, n ~< l the matrix of the restriction of U(e-0r/2)]~ to ~E(l). 

L E M M A .  

ql ,  n _(  l~n.m+n 1 - , - - , j  I Pm, n. 

Proof. From (1), 

e-(~/2)J2 = e-0r/2)J, e-0r/2)J3 e(rr/2)1,. 
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~ [ ~ ptm, na~peatml<+oo. ( 4 )  

l = 0  m=l n=-l 

We shall denote p / ,  = Pt m n (0). Then f = Y~= ,r a m for )-2 if and only n , - 0 ~ m  = - I  l y/n E ;E is analytic 

if there exists a > 0 such that 

1r , , (U) - 
(-1)t- m i n - m .~ / ( l  - -  m)!  (l + n)! d t -  n 

2t(l - m)! x/ ~ (1 - p)-(n-m)/2(1 +p)-(n+m)/2 dP t-n [ (1-p) l -  m (1 +p)l+m ]. 

2.5. 
(resp. U(e -(rr/2)J2 )f) is analytic for J-3. From [3, p. 85], for all l E gq, the restriction of U(e 0r/2)J~ ) 

to the subspace ~(t) with basis {y/m, - l  ~< m ~< l) has matrix in this basis (Ptm, n(0))_ l  < m, n ~ l, 
where P~, n is the generalized spherical function: 



As Ja y[n = _imy[n,  the matrix of the restriction of  U(e -(zr/2)J3 ) to j((O is the diagonal matrix 

( im)-l  < m < I. Hence, we get 

l 

gin, n =  Z l .k l Pm, k l Pk, n 
k= --l 

since plm, n = pin, m Vn, m. Now P/m./c -- (-1)k-mpm,l k, hence 

l 
q/m,n = ( - 1 )  m ~, (-i)kP/m, l kPk, n 

k = - l  

= ( _ l ) m  ~ - i ( m + n ) n / 2 n l  m �9 m + n  1 
r m , , = ( - 1 )  ( - 0  Pm,n 

by [3, p. 91 formula (28')] (Q.E.D.) 

From the lemma, f = ZT= o 2;~ =_t a~ n Y~ E Jf is analytic for )]- if and only if there exists a > 0 

such that 

2 t 7 . . ,  . <+=.  (5> (--l) Pm, nal t2e alml 
l=0 m = - I  n = - I  

2. 6. The analytic vectors for U are those of B = (1 - ~)1/2 = .l% oX/1 + l(l + 1), where ~ is the 

closure of  the Laplacian A = J12 + j2  + j 2  which here is the Casimir. Hence f =  v= 2l a m x'/=o m=-; ; YJ n E J s  

is analytic for U if and only if there exists a > 0 such that 2;% o (2/m = -;la~ n 12) eat < +~. 

2. 7. Let f = ~T= o Xl y t  ~ JC (~t~ o6Xl 12 < +oo). From (4) and (5), f is analytic for ,72 if and only if 

it is analytic for f~. 

LEMMA. 

l 2 eaiml IPm, l[ "~ +r Va, 0 < a <  2 log 2. 
l=0  m = - l  

Proof. Wehave Ip/m tl e el el , =1/2 (t+m). For a > 0, since 

! 2l ~ alml ca)2/ 
m~_, [ l+m}  e ~< e-~(1 + + e~(1 + e-a)  2t, 

there exists Ca > 0 such that 

L / 2 l \  
mZ_, l+m) e'm'<-- Ca e VZ 
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l ' t therefore Et = 0 2~m = -tlPm, 112 e~ lint< C~ E~'= 0 et('~-2 log 2) and the lemma is proved. 

From the lernma, any vectorf= ~ =  I~k/Y/(]~T= 1 [)t/I 2 < +oo) iS analytic forf t  and for f2. 

Take first ~k I = e - x / ~ ,  Then f is a C ~-vector for the representation U, but f is not an analytic 

vector, in particular f i s  not analytic for J3. 

Take n o w  ~k I = 1/l. Then f is not a C ~-vector for U, however it is analytic for f~ and J l .  

We also deduce the existence of vectors which are analytic for J-a and f=, but not for ~ ,  by 
utilizing 

x = +  ( e i~/4 i e tn/4 ) E G 

i e - i~ /4  e - i~ /4  

such that A d(x)J k = Jo(k) with o = (1, 2, 3) ciicular permutation. 

In particular, there exists vectors f which are analytic for f3 and J2 though U(e-('r/2)A ) f  is 

not analytic for )-3- 

3. CONCLUSION 

Analyticity for (the representatives of) a set of Lie generators (X1 ..... X r } being not sufficient 

to ensure analyticity for the whole Lie algebra, it is necessary to introduce 'mixed conditions' like 

Ilzr(Xq) ...Tr(Xin)~oll~cnn!, C>O,  V n C N ,  1 ~<i,, ...,i n <~r. 

That such conditions indeed imply analyticity of s0 for the whole Lie algebra is still unknown, 

though the answer is positive for some 'stratified' nilpotent Lie algebras [1 ], 
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